CHAPTER 3
FUZZY RELATION and COMPOSITION
Definition (Product set) Let A and B be two non-empty sets, the product set or Cartesian product $A \times B$ is defined as follows,

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Example $A = \{a_1, a_2, a_3\}$, $B = \{b_1, b_2\}$

$$A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2), (a_3, b_1), (a_3, b_2)\}$$
Crisp relation

- **Binary Relation**
 If A and B are two sets and there is a specific property between elements x of A and y of B, this property can be described using the ordered pair (x, y). A set of such (x, y) pairs, $x \in A$ and $y \in B$, is called a relation R.

 $$R = \{ (x, y) \mid x \in A, y \in B \}$$

- **n-ary relation**
 For sets $A_1, A_2, A_3, ..., A_n$, the relation among elements $x_1 \in A_1, x_2 \in A_2, x_3 \in A_3, ..., x_n \in A_n$ can be described by n-tuple $(x_1, x_2, ..., x_n)$. A collection of such n-tuples $(x_1, x_2, x_3, ..., x_n)$ is a relation R among $A_1, A_2, A_3, ..., A_n$.

 $$(x_1, x_2, x_3, ..., x_n) \in R, \hspace{1cm} R \subseteq A_1 \times A_2 \times A_3 \times ... \times A_n$$
Crisp relation

- **Domain and Range**

 \[dom(R) = \{ x \mid x \in A, (x, y) \in R \text{ for some } y \in B \} \]

 \[ran(R) = \{ y \mid y \in B, (x, y) \in R \text{ for some } x \in A \} \]
Crisp relation

* Characteristics of relation

 (1) Surjection (many-to-one)

 - $f(A) = B$ or $\text{ran}(R) = B$. $\forall y \in B, \exists x \in A, y = f(x)$

 - Thus, even if $x_1 \neq x_2$, $f(x_1) = f(x_2)$ can hold.
(3) Injection (into, one-to-one)
- for all $x_1, x_2 \in A$, $x_1 \neq x_2$, $f(x_1) \neq f(x_2)$.
- if R is an injection, $(x_1, y) \in R$ and $(x_2, y) \in R$ then $x_1 = x_2$.

(4) Bijection (one-to-one correspondence)
- both a surjection and an injection.
Crisp relation

Representation methods of relations

1. Bipartigraph (Fig 3.7)
 representing the relation by drawing arcs or edges

2. Coordinate diagram (Fig 3.8)
 plotting members of A on x axis and that of B on y axis

Fig 3.7 Binary relation from A to B
Fig 3.8 Relation of $x^2 + y^2 = 4$
Crisp relation

(3) Matrix
manipulating relation matrix

(4) Digraph
the directed graph or digraph method

\[M_R = (m_{ij}) \]

\[m_{ij} = \begin{cases} 1, & (a_i, b_j) \in R \\ 0, & (a_i, b_j) \notin R \end{cases} \]

\[i = 1, 2, 3, \ldots, m \]
\[j = 1, 2, 3, \ldots, n \]

\[R \]

<table>
<thead>
<tr>
<th></th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(b_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(a_3)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(a_4)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Matrix

Directed graph
Crisp relation

Operations on relations

\(R, S \subseteq A \times B \)

1. Union of relation \(T = R \cup S \)

 If \((x, y) \in R\) or \((x, y) \in S\), then \((x, y) \in T\)

2. Intersection of relation \(T = R \cap S \)

 If \((x, y) \in R\) and \((x, y) \in S\), then \((x, y) \in T\).

3. Complement of relation

 If \((x, y) \notin R\), then \((x, y) \in \overline{R}\)

4. Inverse relation

 \(R^{-1} = \{(y, x) \in B \times A \mid (x, y) \in R, x \in A, y \in B\} \)

5. Composition \(T \)

 \(R \subseteq A \times B, S \subseteq B \times C \), \(T = S \circ R \subseteq A \times C \)

 \(T = \{(x, z) \mid x \in A, y \in B, z \in C, (x, y) \in R, (y, z) \in S\} \)
Crisp relation

- **Path and connectivity in graph**
 - Path of length \(n \) in the graph defined by a relation \(R \subseteq A \times A \) is a finite series of \(p = a, x_1, x_2, \ldots, x_{n-1}, b \) where each element should be \(a \ R x_1, x_1 \ R x_2, \ldots, x_{n-1} \ R b \).
 - Besides, when \(n \) refers to a positive integer

(1) Relation \(R^n \) on \(A \) is defined, \(x \ R^n \ y \) means there exists a path from \(x \) to \(y \) whose length is \(n \).

(2) Relation \(R^\infty \) on \(A \) is defined, \(x \ R^\infty \ y \) means there exists a path from \(x \) to \(y \).

That is, there exists \(x \ R \ y \) or \(x \ R^2 \ y \) or \(x \ R^3 \ y \) ... and. This relation \(R^\infty \) is the reachability relation, and denoted as \(x R^\infty y \).

(3) The reachability relation \(R^\infty \) can be interpreted as connectivity relation of \(A \).
Properties of relation on a single set

Fundamental properties

1) Reflexive relation
\[x \in A \rightarrow (x, x) \in R \text{ or } \mu_R(x, x) = 1, \ \forall \ x \in A \]
- irreflexive
 - if it is not satisfied for some \(x \in A \)
- antireflexive
 - if it is not satisfied for all \(x \in A \)

2) Symmetric relation
\[(x, y) \in R \rightarrow (y, x) \in R \text{ or } \mu_R(x, y) = \mu_R(y, x), \ \forall \ x, y \in A \]
- asymmetric or nonsymmetric
 - when for some \(x, y \in A, (x, y) \in R \) and \((y, x) \notin R \).
- antisymmetric
 - if for all \(x, y \in A, (x, y) \in R \) and \((y, x) \notin R \)
3) Transitive relation
 For all $x, y, z \in A$
 $(x, y) \in R, (y, z) \in R \rightarrow (x, z) \in R$

4) Closure
 - Closure of R with the respect to a specific property is the smallest relation R' containing R and satisfying the specific property
Properties of relation on a single set

Example

The transitive closure (or reachability relation) \(R^\infty \) of \(R \)
for \(A = \{1, 2, 3, 4\} \) and \(R = \{(1, 2), (2, 3), (3, 4), (2, 1)\} \) is
\[
R^\infty = R \cup R^2 \cup R^3 \cup \ldots
\]
\[
=\{(1, 1), (1, 2), (1, 3), (1,4), (2,1), (2,2), (2, 3), (2, 4), (3, 4)\}.
\]

Fig 3.10 Transitive closure
Properties of relation on a single set

- **Equivalence relation**

 1. Reflexive relation
 \[x \in A \rightarrow (x, x) \in R \]
 2. Symmetric relation
 \[(x, y) \in R \rightarrow (y, x) \in R \]
 3. Transitive relation
 \[(x, y) \in R, (y, z) \in R \rightarrow (x, z) \in R \]
Properties of relation on a single set

- **Equivalence classes**

 A partition of A into n disjoint subsets A_1, A_2, \ldots, A_n

(a) Expression by set

(b) Expression by undirected graph

Fig 3.11 Partition by equivalence relation

$\pi(A/R) = \{A_1, A_2\} = \{\{a, b, c\}, \{d, e\}\}$
Properties of relation on a single set

- **Compatibility relation (tolerance relation)**
 - (1) Reflexive relation
 \[x \in A \rightarrow (x, x) \in R \]
 - (2) Symmetric relation
 \[(x, y) \in R \rightarrow (y, x) \in R \]

(a) Expression by set
(b) Expression by undirected graph

Fig 3.12 Partition by compatibility relation
Properties of relation on a single set

- **Pre-order relation**

 (1) **Reflexive relation**

 \[x \in A \rightarrow (x, x) \in R \]

 (2) **Transitive relation**

 \[(x, y) \in R, (y, z) \in R \rightarrow (x, z) \in R\]
Properties of relation on a single set

♦ Order relation

(1) Reflexive relation
\[x \in A \rightarrow (x, x) \in R \]

(2) Antisymmetric relation
\[(x, y) \in R \rightarrow (y, x) \notin R \]

(3) Transitive relation
\[(x, y) \in R, (y, z) \in R \rightarrow (x, z) \in R \]

strict order relation

(1’) Antireflexive relation
\[x \in A \rightarrow (x, x) \notin R \]

total order or linear order relation

(4) \(\forall x, y \in A, (x, y) \in R \) or \((y, x) \in R \)
Properties of relation on a single set

Comparison of relations

<table>
<thead>
<tr>
<th>Property Relation</th>
<th>Reflexive</th>
<th>Antireflexive</th>
<th>Symmetric</th>
<th>Antisymmetric</th>
<th>Transitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalence</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Compatibility</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Pre-order</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Order</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Strict order</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Fuzzy relation

- **Crisp relation**
 - membership function $\mu_R(x, y)$

 \[
 \mu_R(x, y) = \begin{cases}
 0 & \text{iff } (x, y) \notin R \\
 1 & \text{iff } (x, y) \in R
 \end{cases}
 \]

 $\mu_R : A \times B \rightarrow \{0, 1\}$

- **Fuzzy relation**

 $\mu_R : A \times B \rightarrow [0, 1]$

 \[R = \{(x, y), \mu_R(x, y))| \mu_R(x, y) \geq 0, \ x \in A, \ y \in B\}\]
Example
Crisp relation R

$\mu_R(a, c) = 1$, $\mu_R(b, a) = 1$, $\mu_R(c, b) = 1$ and $\mu_R(c, d) = 1$.

Fuzzy relation R

$\mu_R(a, c) = 0.8$, $\mu_R(b, a) = 1.0$, $\mu_R(c, b) = 0.9$, $\mu_R(c, d) = 1.0$

(a) Crisp relation

(b) Fuzzy relation

Fig 3.16 crisp and fuzzy relations

<table>
<thead>
<tr>
<th>A</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>b</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>c</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>d</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

corresponding fuzzy matrix
Fuzzy relation

- **Fuzzy matrix**

 1) Sum
 \[
 A + B = \text{Max} \left[a_{ij}, b_{ij} \right]
 \]

 2) Max product
 \[
 A \cdot B = AB = \text{Max} \left[\text{Min} \left(a_{ik}, b_{kj} \right) \right]
 \]

 3) Scalar product
 \[
 \lambda A \text{ where } 0 \leq \lambda \leq 1
 \]
Example

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0.2</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>b</td>
<td>0.4</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>c</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>1.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>b</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>c</td>
<td>0.0</td>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A + B$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>b</td>
<td>0.4</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>c</td>
<td>0.0</td>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \cdot B$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>b</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>c</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Fuzzy relation

- **Operation of fuzzy relation**

 1) **Union relation**
 \[
 \forall (x, y) \in A \times B
 \]
 \[
 \mu_{R \cup S}(x, y) = \text{Max} [\mu_R(x, y), \mu_S(x, y)] = \mu_R(x, y) \lor \mu_S(x, y)
 \]

 2) **Intersection relation**
 \[
 \mu_{R \cap S}(x) = \text{Min} [\mu_R(x, y), \mu_S(x, y)] = \mu_R(x, y) \land \mu_S(x, y)
 \]

 3) **Complement relation**
 \[
 \forall (x, y) \in A \times B
 \]
 \[
 \mu_R(x, y) = 1 - \mu_R(x, y)
 \]

 4) **Inverse relation**

 For all \((x, y) \subseteq A \times B\),
 \[
 \mu_{R^{-1}}(y, x) = \mu_R(x, y)
 \]
Fuzzy relation

Fuzzy relation matrix

<table>
<thead>
<tr>
<th>M_R</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M_S</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>0.9</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$M_{R\times S}$</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>1.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M_{R-S}</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$M_{\bar{R}}$</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Fuzzy relation

Composition of fuzzy relation

For \((x, y) \in A \times B, (y, z) \in B \times C\),

\[
\mu_{SR}(x, z) = \max \left[\min \left(\mu_R(x, y), \mu_S(y, z) \right) \right]
\]

\[
= \vee \left[\mu_R(x, y) \land \mu_S(y, z) \right]
\]

\(M_{SR} = M_R \bullet M_S\)
Fuzzy relation

Example

<table>
<thead>
<tr>
<th>S</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.9</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>b</td>
<td>0.2</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>c</td>
<td>0.8</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>d</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[S \circ R \]

<table>
<thead>
<tr>
<th>S \circ R</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Composition of fuzzy relation
Fuzzy relation

- **α-cut of fuzzy relation**
 \[R_\alpha = \{(x, y) \mid \mu_R(x, y) \geq \alpha, \ x \in A, y \in B\} : \text{a crisp relation.} \]

Example

\[M_R = \begin{array}{ccc}
0.9 & 0.4 & 0.0 \\
0.2 & 1.0 & 0.4 \\
0.0 & 0.7 & 1.0 \\
0.4 & 0.2 & 0.0 \\
\end{array} \]

- \[M_{R_{0.4}} = \begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
\end{array} \]
- \[M_{R_{0.7}} = \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
\end{array} \]
- \[M_{R_{0.9}} = \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array} \]
- \[M_{R_{1.0}} = \begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array} \]
Fuzzy relation

- **Projection**

 For all \(x \in A, y \in B \),

 \[
 \mu_{R_A}(x) = \max_y \mu_R(x, y) \quad : \text{projection to A}
 \]

 \[
 \mu_{R_B}(y) = \max_x \mu_R(x, y) \quad : \text{projection to B}
 \]

- **Example**

 \[
 \begin{array}{c|ccc}
 & b_1 & b_2 & b_3 \\
 \hline
 a_1 & 0.1 & 0.2 & 1.0 \\
 a_2 & 0.6 & 0.8 & 0.0 \\
 a_3 & 0.0 & 1.0 & 0.3 \\
 \end{array}
 \]

 \[
 M_{R_A} = \begin{array}{c}
 a_1 \quad 1.0 \\
 a_2 \quad 0.8 \\
 a_3 \quad 1.0 \\
 \end{array}
 \]

 \[
 M_{R_B} = \begin{array}{ccc}
 & b_1 & b_2 & b_3 \\
 \hline
 0.6 & 1.0 & 1.0 \\
 \end{array}
 \]
Fuzzy relation

- Projection in n dimension
 \[\mu_{R_{X_{i1} \times X_{i2} \times \ldots \times X_{ik}}} (x_{i1}, x_{i2}, \ldots, x_{ik}) = \max_{x_{j1}, x_{j2}, \ldots, x_{jm}} \mu_R (x_1, x_2, \ldots, x_n) \]

- Cylindrical extension
 \[\mu_{C(R)} (a, b, c) = \mu_R (a, b) \]
 \[a \in A, b \in B, c \in C \]

- Example

 \[\mu_{C(R_A)} (a_1, b_1) = \mu_{R_A} (a_1) = 1.0 \]
 \[\mu_{C(R_A)} (a_1, b_2) = \mu_{R_A} (a_1) = 1.0 \]
 \[\mu_{C(R_A)} (a_2, b_1) = \mu_{R_A} (a_2) = 0.8 \]

 \[M_{C(R_A)} = \]
 \[
 \begin{array}{c|ccc}
 \text{a} & b_1 & b_2 & b_3 \\
 \hline
 a_1 & 1.0 & 1.0 & 1.0 \\
 a_2 & 0.8 & 0.8 & 0.8 \\
 a_3 & 1.0 & 1.0 & 1.0 \\
 \end{array}
 \]
Extension of fuzzy set

- **Extension by relation**
 - Extension of fuzzy set

 \[
 x \in A, \ y \in B \ \ y = f(x) \ \text{or} \ \ x = f^{-1}(y)
 \]

 for \(y \in B \)

 \[
 \mu_{B'}(y) = \max_{x \in f^{-1}(y)} \left[\mu_A(x) \right] \quad \text{if} \ f^{-1}(y) \not= \emptyset
 \]

Example

\[A = \{(a_1, 0.4), (a_2, 0.5), (a_3, 0.9), (a_4, 0.6)\}, \ B = \{b_1, b_2, b_3\}\]

- \(f^{-1}(b_1) = \{(a_1, 0.4), (a_3, 0.9)\}\), \(\max [0.4, 0.9] = 0.9\)

 \[\Rightarrow \mu_{B'}(b_1) = 0.9\]

- \(f^{-1}(b_2) = \{(a_2, 0.5), (a_4, 0.6)\}\), \(\max [0.5, 0.6] = 0.6\)

 \[\Rightarrow \mu_{B'}(b_2) = 0.6\]

- \(f^{-1}(b_3) = \{(a_4, 0.6)\}\)

 \[\Rightarrow \mu_{B'}(b_3) = 0.6\]

\[B' = \{(b_1, 0.9), (b_2, 0.6), (b_3, 0.6)\}\]
Extension of fuzzy set

Extension by fuzzy relation

For \(x \in A, y \in B, \) and \(B' \subseteq B \)

\[
\mu_{B'}(y) = \max \left[\min \left(\mu_A(x), \mu_R(x, y) \right) \right]_{x \in f^{-1}(y)}
\]

Example

For \(b_1 \)

\[
\begin{align*}
\min [\mu_A(a_1), \mu_R(a_1, b_1)] &= \min [0.4, 0.8] = 0.4 \\
\min [\mu_A(a_3), \mu_R(a_3, b_1)] &= \min [0.9, 0.3] = 0.3 \\
\max [0.4, 0.3] &= 0.4 \quad \Rightarrow \quad \mu_{B'}(b_1) = 0.4
\end{align*}
\]

For \(b_2 \)

\[
\begin{align*}
\min [\mu_A(a_2), \mu_R(a_2, b_2)] &= \min [0.5, 0.2] = 0.2 \\
\min [\mu_A(a_4), \mu_R(a_4, b_2)] &= \min [0.6, 0.7] = 0.6 \\
\max [0.2, 0.6] &= 0.6 \quad \Rightarrow \quad \mu_{B'}(b_2) = 0.6
\end{align*}
\]

For \(b_3 \)

\[
\begin{align*}
\max \min [\mu_A(a_4), \mu_R(a_4, b_3)] &= \max \min [0.6, 0.4] = 0.4 \\
\Rightarrow \quad \mu_{B'}(b_3) = 0.4
\end{align*}
\]

\[B' = \{(b_1, 0.4), (b_2, 0.6), (b_3, 0.4)\} \]
Example

\[A = \{(a_1, 0.8), (a_2, 0.3)\} \]
\[B = \{b_1, b_2, b_3\} \]
\[C = \{c_1, c_2, c_3\} \]

\[M_{R_1} = \]
\[
\begin{array}{c|ccc}
\text{} & b_1 & b_2 & b_3 \\
\hline
a_1 & 0.3 & 1.0 & 0.0 \\
a_2 & 0.8 & 0.0 & 0.0 \\
\end{array}
\]

\[M_{R_2} = \]
\[
\begin{array}{c|ccc}
\text{} & c_1 & c_2 & c_3 \\
\hline
b_1 & 0.7 & 0.4 & 1.0 \\
b_2 & 0.2 & 0.0 & 0.8 \\
b_3 & 0.0 & 0.3 & 0.9 \\
\end{array}
\]

\[B' = \{(b_1, 0.3), (b_2, 0.8), (b_3, 0)\} \]
\[C' = \{(c_1, 0.3), (c_2, 0.3), (c_3, 0.8)\} \]
Fuzzy distance between fuzzy sets

- Pseudo-metric distance

 \[\begin{align*}
 (1) \quad & d(x, x) = 0, \quad \forall \ x \in X \\
 (2) \quad & d(x_1, x_2) = d(x_2, x_1), \quad \forall \ x_1, x_2 \in X \\
 (3) \quad & d(x_1, x_3) \leq d(x_1, x_2) + d(x_2, x_3), \quad \forall \ x_1, x_2, x_3 \in X \\
 + \ (4) \ & \text{if } d(x_1, x_2) = 0, \text{ then } x_1 = x_2 \Rightarrow \text{ metric distance}
 \end{align*} \]

Distance between fuzzy sets

- \(\forall \ \delta \in \mathbb{R}^+, \mu_{d(A, B)}(\delta) = \text{Max} [\text{Min} (\mu_A(a), \mu_B(b))] \)

 \[\delta = d(a, b) \]
Example: \[A = \{(1, 0.5), (2, 1), (3, 0.3)\} \quad B = \{(2, 0.4), (3, 0.4), (4, 1)\} \]